Roots from Trees:

A Machine Learning Approach to Unit Root Detection

Gary Cornwall

Jeff Chen

Beau Sauley

Bureau of Economic Analysis

Bennett Institute for Public Policy

University of Cambridge

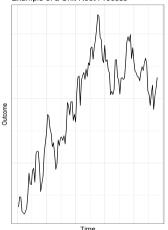
Murray State University

October 20, 2021

The views expressed here are those of the authors and do not represent those of the U.S. Bureau of Economic Analysis or the U.S. Department of Commerce.

Motivation

- The [unresolved] presence of a unit root in time series can produce "nonsense regressions" (Granger & Newbold, 1974).
- Dozens of tests have since been developed to detect unit roots under a variety of settings (*e.g.*, panel data, structural breaks, etc.).
- Tests don't always agree but each tells you something about the series, how does a practitioner weigh the evidence?



- 1. Can we draw a link between a single unit root test and a "weak learner".
- 2. If a test can be considered a weak learner, can we exploit between test variation using modern machine learning algorithms to better identify unit root processes?

- 1. Can we draw a link between a single unit root test and a "weak learner". Yes, in fact these are equivalent in both single and two-tailed tests for some $\alpha = \alpha'$.
- 2. If a test can be considered a weak learner, can we exploit between test variation using modern machine learning algorithms to better identify unit root processes? Yes, since we know how to aggregate weak base learners and create more powerful ensemble prediction methods we can use tools such as random forests and gradient boosting to improve unit root test accuracy.

- The unit root problem is a difficult time series econometrics problem which has produced nearly five decades of research and many different test statistics.
- The test for unit roots is important because failing to identify a unit root can invalidate all subsequent inferences (Granger & Newbold, 1974).
- Co-integrated relationships between series means you can't just assume everything has a unit root (Granger, 1981; Engle and Granger, 1987).
- The difficulty comes from differentiating unit roots from *near unit roots*, as a result these test statistics have low power (Ng & Perron, 2001)

What is a Unit Root?

Let y_t be an autoregressive time series generated such that,

$$y_t = \phi y_{t-1} + \epsilon_t, \quad t = (1, \dots, T)$$

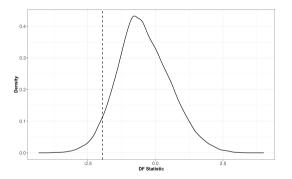
- We assume $\epsilon_t \sim N(0, \sigma^2) \ \forall \ t$ and that $\sigma_1^2 = \ldots = \sigma_T^2$.
- We can write this as $(1 \phi L)y_t = \epsilon_t$ such that $Ly_t = y_{t-1}$.
- $(1 \phi L)$ has a root of $1/\phi$ and if $|\phi| < 1$ then y_t is considered stationary.
- ► Tests are often using an H₀: φ = 1 and H₁: |φ| < 1 structure (e.g. Augmented Dickey Fuller test).</p>

The Dickey-Fuller test statistic:

$$\hat{\tau} = (\hat{\phi} - 1)S_e^{-1}(\sum_{t=2}^{N} Y_{t-1}^2)^{1/2},$$
$$S_e^{-1} = (n-2)^{-1}\sum_{t=2}^{N} (Y_t - \hat{\phi}Y_{t-1})^2,$$

with limiting distribution outlined in Dickey & Fuller (1979).

• Calculated on first difference of Y with $H_0: \phi = 1$ and $H_1: |\phi| < 1$.



Different assumed DGPs result in different null distributions and decision thresholds:¹

$$y_{t} = \lambda + \phi y_{t-1} + \delta t + \epsilon_{t} \rightarrow x_{\alpha} = -3.45 | \alpha = 0.05$$
$$y_{t} = \lambda + \phi y_{t-1} + \epsilon_{t} \rightarrow x_{\alpha} = -2.89 | \alpha = 0.05$$
$$y_{t} = \phi y_{t-1} + \epsilon_{t} \rightarrow x_{\alpha} = -1.95 | \alpha = 0.05$$

¹Not everyone even agrees on the decision thresholds for the same test (e.g., Banerjee, et al., 1993 versus Hamilton, 1994 versus MacKinnon, 2010!

Different assumed DGPs result in different null distributions and decision thresholds:¹

$$y_t = \lambda + \phi y_{t-1} + \delta t + \epsilon_t \rightarrow x_\alpha = -3.45 | \alpha = 0.05$$
$$y_t = \lambda + \phi y_{t-1} + \epsilon_t \rightarrow x_\alpha = -2.89 | \alpha = 0.05$$
$$y_t = \phi y_{t-1} + \epsilon_t \rightarrow x_\alpha = -1.95 | \alpha = 0.05$$

Choice of DGP opens up an additional error path beyond Type I and Type II errors.

¹Not everyone even agrees on the decision thresholds for the same test (e.g., Banerjee, et al., 1993 versus Hamilton, 1994 versus MacKinnon, 2010!

Different assumed DGPs result in different null distributions and decision thresholds:¹

$$y_{t} = \lambda + \phi y_{t-1} + \delta t + \epsilon_{t} \rightarrow x_{\alpha} = -3.45 | \alpha = 0.05$$
$$y_{t} = \lambda + \phi y_{t-1} + \epsilon_{t} \rightarrow x_{\alpha} = -2.89 | \alpha = 0.05$$
$$y_{t} = \phi y_{t-1} + \epsilon_{t} \rightarrow x_{\alpha} = -1.95 | \alpha = 0.05$$

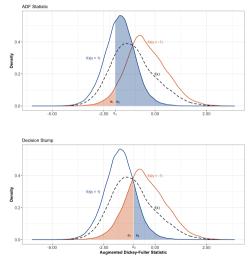
Choice of DGP opens up an additional error path beyond Type I and Type II errors.

There are many tests that are similarly structured, *e.g.*, ADF (Dickey and Fuller, 1981), PP (Phillips and Perron, 1988), KPSS (Kwiatkowski et al., 1992), PGFF (Pantula et al., 1994), Breit (Breitung, 2002; Breitung and Taylor, 2003), ERS (Elliot et al., 1996), URSP (Schmidt and Phillips, 1992), and URZA (Zivot and Andrews, 2002).

¹Not everyone even agrees on the decision thresholds for the same test (e.g., Banerjee, et al., 1993 versus Hamilton, 1994 versus MacKinnon, 2010!

Roots are Stumps

- In both cases a decision is being made over a shared support of X.
- For some α = α' it must be the case that x₀ = x_α.
- $\left((h(x) \equiv g(x)) | \alpha = \alpha' \right)$ where h(x) is the decision stump and g(x) is the Unit Root test.
- $x_0 \approx -1.03$ which means $\alpha = \alpha' \approx 0.273$.



A Simple Procedure for Composite Test Construction

- 1. Simulate a balanced training, validation, and test set containing representative cases of the null and alternative hypotheses
- 2. Derive transmitters from one or multiple test statistics and attributes of the time series
- 3. Train a set of supervised classifiers, then select the model that fairs the best in cross-validation
- 4. Finally, conditional upon some desired Type I error rate, α , or error cost ratio, $c(e_2)/c(e_1)$, return a class prediction for the series in question.

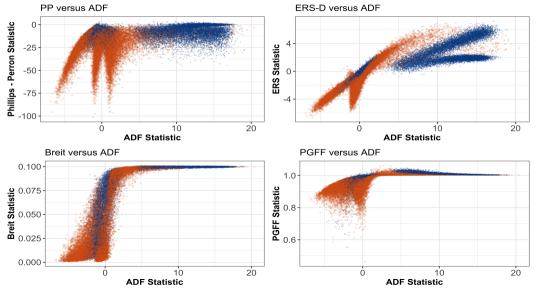
For any hypothesis test we can write down a DGP which will satisfy the null, *e.g.* unit roots.

- 1. Generate 500,000 time series with 350,000 for training, 75,000 for validation, and 75,000 for testing.
- 2. A series will contain a unit root, that is $\phi=1$ with probability 0.50 and $\phi\in\{0.9000,0.9999\}$ otherwise.
- 3. Series will be uniformly distributed over the three unit root DGPs mentioned earlier.
- 4. All noise is Gaussian white noise.

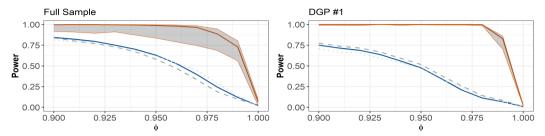
UR Tests	Level and First Difference	STL Decomposed Series	Miscellaneous
ADF PP PGFF KPSS ERS (d & p) URSP	Skewness Kurtosis Box Statistic Lyapunov Exponent TNN Test Hurst Exponent	TNN Test Skewness Kurtosis Box Statistic	Length Frequency $var(\Delta y)/var(y)$
URZA Breit	Strength of Trend Strength of Seasonality		

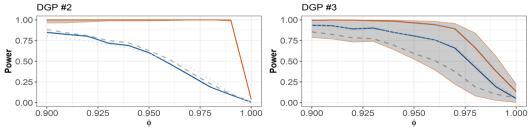
While we generate the data from one of the three possible "cases" outlined in the literature all test statistics are calculated on the most parsimonious DGP assumption possible, *e.g.* no drift or trend for the ADF.

Is there variation in our features?



Power Curves





Legend - ADF - ERS-d - GB - PP

Empirical Example

- Revisit 14 macro indicators from Nelson & Plosser (1982) which serve as a common benchmarking data set for unit root studies.
- Original paper indicated that, of the 14 series, only Unemployment Rate was stationary.
- Subsequent studies by Perron (1989), Stock (1991), Kwiatkowski, et. al. (1992), Andrews & Chen (1994), and Charles & Darne (2012) all introduced significant disagreement.
- We find that, depending on the desired Type I error rate, between 11 indicators ($\alpha = 0.10$) and 2 indicators ($\alpha = 0.01$) can be considered stationary.

Package Preview

15	out01	<-	<pre>ml_test(nelson_plosser_data,</pre>	pvalue :	=	.01)
16	out05	<-	<pre>ml_test(nelson_plosser_data,</pre>	pvalue :	=	.05)
17	out10	<-	<pre>ml_test(nelson_plosser_data,</pre>	pvalue :	=	.10)

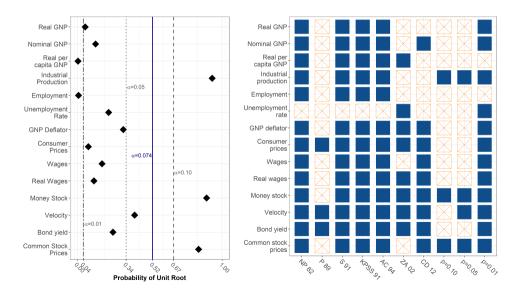
>	out01\$verd	icts						
	series_no	pvalue_requested						verdict_xgb⊤ree
1	gnp.r	0.01	0.01	Using	exact	p-value	threshold	unit root
2	gnp.n	0.01					threshold	unit root
3	gnp.pc	0.01					threshold	stationary
4	ip	0.01					threshold	unit root
5	emp	0.01					threshold	stationary
6	ur	0.01					threshold	unit root
7	gnp.p	0.01					threshold	unit root
8	cpi	0.01					threshold	unit root
9	wg.n	0.01					threshold	unit root
10) wg.r	0.01					threshold	unit root
11		0.01					threshold	unit root
12		0.01	0.01	Using	exact	p-value	threshold	unit root
13		0.01					threshold	unit root
14	sp	0.01	0.01	Using	exact	p-value	threshold	unit root

Package Preview

> `	threshold	ds_disp	lay							
	method	pvalue	threshold	sensitivity	specificity	tp	tn	fp	fn	accuracy
1	xgb⊤ree	best	0.51944008	0.9596049	0.9261502	35847	34864	2780	1509	0.9428133
2	xgbTree	0.1	0.66509449	0.9765232	0.9000106	36479	33880	3764	877	0.9381200
21	xgb⊤ree	0.05	0.33739650	0.9249652	0.9500053	34553	35762	1882	2803	0.9375333
22	xgb⊤ree	0.01	0.04205808	0.6550755	0.9900117	24471	37268	376	12885	0.8231867

>	out01\$resul	ts							
	series_no	pvalue_requested	pvalue_returned			type_	_of_result	score_xgbTree	threshold_xgbTree
1	gnp.r	0.01					threshold	0.054929197	0.04205808
2	gnp.n	0.01					threshold	0.126735985	0.04205808
3	gnp.pc	0.01	0.01	Using	exact	p-value	threshold	0.005536497	0.04205808
4	ip	0.01	0.01	Using	exact	p-value	threshold	0.931120269	0.04205808
5	emp	0.01					threshold		0.04205808
6	ur	0.01					threshold	0.216778159	0.04205808
7	gnp.p	0.01					threshold	0.318320453	0.04205808
8	cpi	0.01	0.01	Using	exact	p-value	threshold	0.077048123	0.04205808
9	wg.n	0.01					threshold	0.171301544	0.04205808
10	wg.r	0.01					threshold	0.115318656	0.04205808
11	. M	0.01					threshold	0.892714120	0.04205808
12		0.01					threshold	0.396362841	0.04205808
13	bnd	0.01	0.01	Using	exact	p-value	threshold	0.246358752	0.04205808
14	sp	0.01	0.01	Using	exact	p-value	threshold	0.837645248	0.04205808

Comparison with previous literature...



Conclusion

- Unit Root tests are weak learners.
- We can aggregate weak learners using gradient boosting to form a pseudo-composite test for unit roots.
- This is [pessimistically] 20 percentage points more accurate and 37 percentage points more powerful than a traditional unit root test.

Thank you!

Main Results Table

Table: Main Results

	ACC	SEN	SPE	PPV	NPV	F^1	МСС
$GB \alpha = 0.100$	0.937	0.951	0.923	0.925	0.950	0.938	0.874
$\mathrm{GB} lpha=$ 0.074 *	0.941	0.934	0.948	0.947	0.935	0.941	0.882
$\mathrm{GB} lpha=0.050$	0.938	0.900	0.976	0.973	0.908	0.935	0.878
$\mathrm{GB} lpha=$ 0.010	0.892	0.785	0.998	0.998	0.823	0.879	0.802
ADF	0.763	0.546	0.980	0.964	0.684	0.697	0.583
PP	0.744	0.512	0.975	0.953	0.667	0.666	0.549
KPSS	0.614	0.250	0.977	0.916	0.567	0.393	0.331
PGFF	0.745	0.499	0.989	0.978	0.665	0.661	0.560
BREIT	0.672	0.361	0.981	0.951	0.607	0.524	0.437
ERSd	0.762	0.545	0.979	0.963	0.683	0.696	0.582
ERSp	0.770	0.564	0.976	0.958	0.692	0.710	0.592
URZA	0.635	0.309	0.959	0.883	0.582	0.458	0.354
URSP	0.727	0.552	0.903	0.850	0.669	0.669	0.485