A Practical Framework for Area-level Small Area Estimation

Stephanie Zimmer
All about process

- Audience is statisticians who are not familiar with small-area-estimation (SAE)

- Make SAE approachable and break process into components

- Develop a framework for area-level SAE

- Use concrete examples
 - National Crime Victimization Survey (NCVS)
 - Ohio Medicaid Assessment Survey (OMAS)
Step 1: Understand the requirements

- What are the outcomes?

- What is the small area of interest (domain)? Geographic level, demographic group, etc.

- What is the time period?

- What software can be used? Does it need to be off the shelf? Does it need to be open?

- Anything else?
Step 1: Example

<table>
<thead>
<tr>
<th>Requirement</th>
<th>OMAS</th>
<th>NCVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
<td>Health insurance rates for adults 19+</td>
<td>Victimization rates and prevalence rates for 12 crime types – personal and household</td>
</tr>
<tr>
<td>Domain</td>
<td>Ohio counties</td>
<td>State, large counties, large CBSAs</td>
</tr>
<tr>
<td>Time period</td>
<td>2017</td>
<td>2009-2015 (3-year estimates for each year)</td>
</tr>
<tr>
<td>Software requirement</td>
<td>Off the shelf</td>
<td>Software must be available in the Census RDC</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>State estimates must sum to national estimates</td>
</tr>
</tbody>
</table>
Step 2: Understand the survey data and sampling design

- Is the design longitudinal, cross-sectional, and/or panel?

- What type of variance estimation is used for direct estimates?

- Are the domain identifiers, sampling variables and all outcomes available on the file?

- Summarize the number of observations per domain and be sure to include domains that may have 0 observations

- Calculate direct survey estimates and standard errors in the domains where possible for later comparison
Step 2: Example - NCVS

- Longitudinal and panel design
- Taylor’s series and replicate weights available
- Geographic identifiers only available on restricted use file
- Direct estimates and standard errors were calculated in a subset of states
Step 3: Identify and obtain potential auxiliary data

- Common auxiliary data sources include:
 - Administrative records
 - Data from large area surveys such as the American Community Survey or censuses
 - Commercial data

- Requirements of auxiliary data
 - Include every domain of interest with matching definitions
 - No missing values

- Obtaining data may take a lot of time including data use agreements

- Use simple regression or decision trees to reduce set of potential variables
Step 3: Auxiliary data example – OMAS potential variables

- ACS 5-year, 2012-2016
 - Adult population (N)
 - Hispanic (p)
 - Am. Indian/Alaskan Native (p)
 - Aged 65+ (p)
 - Non-citizen (p)
 - Housing unit ownership (p)
 - Adults with less than high school (p)
 - Male (p)

- County business patterns
 - Adults employed by non-retail firms (p)

- SAIPE
 - Income (median)
 - Poverty, all ages (p)
 - SNAP recipients (N)

- BEA
 - Per capita income

- BLS
 - Unemployment rate (avg)

- 2010 Census
 - Rural housing units (p)
Step 3: Auxiliary data example – OMAS selected variables

Selection process

- Used linear model with stepwise selection of variables
- AIC used for criteria

Selection results

- BEA
 - Per capita income
- SAIPE
 - Poverty, all ages (p)
- ACS 5-year, 2012-2016
 - Housing unit ownership (p)
 - Adults with less than high school (p)
Step 4: Choose model and assumptions

- Consider the data (longitudinal or cross-sectional)

- Consider the outcome (mean, proportion, other)

- Consider the software limitations and availability
Step 4: Example - OMAS

- Modified Fay-Herriot hierarchical Bayes model

- Sampling model:
 - Relates the survey direct estimate with the true proportion
 - Includes sampling error component

- Link between parameter of interest and auxiliary variables
 - Linear model using logit transformation
 - Includes random error component
Step 5: Estimation

- Write the code
- Have thorough code review
- Perform model diagnostics
- Check convergence in Bayesian estimation
Step 5: Example - OMAS

- R package \texttt{R2OpenBUGS} used to estimate parameters which calls \texttt{OpenBUGS} from R

- Convergence examined visually with trace plots and with the Gelman-Rubin potential scale reduction factor
Step 6: Evaluation and validation

- Compare the direct estimates, SAE estimates, and other similar estimates
- Compare precision between direct and SAE estimates
Step 6: NCVS Example: Victimization rate - Direct vs SAE

Graph showing the comparison of victimization rates per 1,000 persons age 12 or older, from 2009 to 2015, for various states (United States, Overall, California, Florida, Georgia, Illinois, Michigan, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Texas). The graph compares Direct and SAE methods for these states.
Step 6: NCVS Example: SE - Direct vs SAE
Step 6: NCVS Example: UCR (Admin data) vs NCVS

- Total violent crime
- Total property crime
- Robbery
- Burglary/trespassing
- Other theft
- Motor-vehicle theft
Summary

- This paper is geared towards a statistician beginning work in SAE or a non-statistician just wanting to understand the process.

- It includes references to seminal works with more details – these are still important.

- We want to make this more accessible and open to all.
Resources

- A Practical Guide to Small Area Estimation, Illustrated Using the Ohio Medicaid Assessment Survey
Thank you

Contact: Stephanie Zimmer | email: sazimmer@rti.org

Dan Liao
Rachel Harter