

Elementary and Secondary STEM Education

Susan Rotermund and Amy Burke

November 2-4, 2021

2021 FCSM Research & Policy Conference

National Center for Science and Engineering Statistics

Social, Behavioral and Economic Sciences

National Science Foundation

Presentation Outline

- How does the United States compare internationally in mathematics and science achievement?
- What do scores on a national mathematics assessment tell us about the performance of U.S. students?
- How do STEM teacher qualifications vary by school characteristics?
- What trends are we seeing in STEM high school coursetaking and are STEM high school experiences associated with choice of postsecondary STEM majo

How does the United States compare internationally in mathematics and science achievement?

U.S. ranks higher internationally in science literacy than in mathematics literacy

- In mathematics, U.S. 15-year-olds in 2018 ranked 25th among 37 OECD countries on the PISA assessment
- In science, U.S. 15-year-olds in 2018 ranked 7th among 37 OECD countries on the PISA assessment
- Japan, South Korea, Estonia, and the Netherlands were the highest-scoring OECD countries in mathematics in 2018, and Estonia and Japan were the highest scoring in science.

International science scores improve

Average scores of U.S. 15-year-old students on the PISA mathematics and science literacy scales: 2003–18

What do scores on a national mathematics assessment tell us about the performance of U.S. students?

Math achievement scores essentially unchanged since 2007

Source: National Center for Science and Engineering Statistics, special tabulations (2020) of the 2009, 2011, 2013, 2015, 2017, and 2019 NAEP mathematics assessments, National Center for Education Statistics.

Score disparities by race or ethnicity persist

Average scores of students in grade 8 on the NAEP mathematics assessment, by race or ethnicity: 2011–2019

Source: National Center for Science and Engineering Statistics, special tabulations (2020) of the 2011, 2013, 2015, 2017, and 2019 NAEP mathematics assessments, National Center for Education Statistics.

Score disparities also seen among other groups

Average scores of students in grade 8 on the NAEP mathematics assessment, by sex, socioeconomic status, disability status, and English language learner status: 2019

Source: National Center for Science and Engineering Statistics, special tabulations (2020) of the 2019 NAEP mathematics assessments, National Center for Education Statistics.

How do STEM teacher qualifications vary by school characteristics?

Access to experienced teachers varies by school poverty level

Public middle and high school mathematics and science teachers with 3 years or fewer of teaching experience, by school poverty level: 2017–18

Source: National Center for Science and Engineering Statistics, special tabulations (2020) of the 2017–2018 National Teacher and Principal Survey, National Center for Education Statistics.

Teachers with in-field degrees more prevalent at lowpoverty schools

Public middle school mathematics and science teachers with in-field subject-matter preparation, by teaching field and school poverty level: 2017–18

Middle school mathematics teachers
Middle school science teachers

Source: National Center for Science and Engineering Statistics, special tabulations (2020) of the 2017–2018 National Teacher and Principal Survey, National Center for Education Statistics.

What trends are we seeing in STEM high school coursetaking and are STEM high school experiences associated with choice of postsecondary STEM major?

More students are taking STEM AP exams

Number of students taking AP STEM exams, by selected subjects: 2009 and

Source: College Board, AP Program Participation and Performance Data 2019. https:// research.collegeboard.org/programs/ap/data/participation/ap-2019.

2019

Differences by sex seen in AP STEM exam-taking

AP exam takers in selected subjects, by sex: 2019

Source: College Board, AP Program Participation and Performance Data 2019. https:// research.collegeboard.org/programs/ap/data/participation/ap-2019.

Math and science identity in high school associated with choice of postsecondary STEM major

Among fall 2009 students in grade 9 who enrolled in postsecondary education after high school, percentage who reported that their current or most recent major was in a STEM field, by perception of mathematics and science identity and ability

Identity and ability

Agree 🗈 Disagree

Source: National Center for Science and Engineering Statistics, special tabulations (2020) of the High School Longitudinal Study of 2009 (HSLS:09), First Follow-Up and Second Follow-Up.

Check out more information and analysis in *Science and Engineering Indicators* Elementary and Secondary STEM Education

SCIENCE &	ENGINEERING INDICATORS	Q SHARE YOUR THOUGHTS ?
	Home Reports State of U.S. S&E 2020 Data Topical Search State Indicators	About Us f y 💿 🖪
Elementary and Sec	condary STEM Education	<u>ک</u> July 2021
Executive Summary	Executive Summary	Authors
Introduction	Key takeaways:	Susan Rotermund and Amy Burke
Student Learning in Mathematics and Science	 Internationally, the United States ranks higher in science (7th of 37 Organisation for Economic Co-operation and Development [OECD] countries) and computer information literacy (5th of 14 participating education systems) than it does in mathematics literacy (25th of 37 OECD countries). 	July 8, 2021 Author contact information >
Teachers of Mathematics and Science	Average scores for U.S. fourth and eighth graders on a national assessment of mathematics improved from 1990 to 2007, but there was no overall measurable improvement in mathematics scores from 2007 to 2019.	Related Content
Post-High School Transitions		National Science Board Vision 2030
Online Education in STEM and Impact of COVID-19	 binterences persist in 0.5. science, technology, engineering, and mathematics (STEM) achievement scores by socioeconomic status (SES) and race or ethnicity. 	State Indicators Data Tool
Conclusion	Differences in U.S. STEM achievement scores by sex are smaller than those by SES or race or ethnicity but are present; male students slightly outscored female students on some national assessments, although female students substantially	Indicators 2020
Glossary	 outscored male students on a computer information literacy exam. 	Se an
References	 Less experienced STEM teachers (as measured by years of teaching) are more prevalent in schools with high-minority enrollment or high-poverty enrollment. 	
Notes	• Data collected on U.S. remote learning in spring 2020 (during the COVID-19 pandemic) revealed differences in access to technology based on household income: 57% of households with income below \$25,000 always had a computer available for	

Contact

Contact: Amy Burke, aburke@nsf.org

